
AutoST: Efficient Neural Architecture Search for
Spatio-Temporal Prediction

Ting Li
1,2
, Junbo Zhang

1,2,3∗
, Kainan Bao

3
, Yuxuan Liang

4
, Yexin Li

5
, Yu Zheng

1,2,3,6∗

1
JD Intelligent Cities Business Unit, JD Digits, Beijing, China

2
JD Intelligent Cities Research, China

3
Institute of Artificial Intelligence, Southwest Jiaotong University, China

4
School of Computing, National University of Singapore, Singapore

5
Hong Kong University of Science and Technology, Hong Kong, China

6
School of Computer Science and Technology, Xidian University, Xi’an, China

{liting6259,baokainan123}@gmail.com,{msjunbozhang,yuxliang,msyuzheng}@outlook.com,yliby@connect.ust.hk

ABSTRACT
Spatio-temporal (ST) prediction (e.g. crowd flow prediction) is of

great importance in a wide range of smart city applications from ur-

ban planning, intelligent transportation and public safety. Recently,

many deep neural network models have been proposed to make

accurate prediction. However, manually designing neural networks

requires amount of expert efforts and ST domain knowledge. How

to automatically construct a general neural network for diverse

spatio-temporal predication tasks in cities? In this paper, we study

Neural Architecture Search (NAS) for spatio-temporal prediction

and propose an efficient spatio-temporal neural architecture search

method, entitled AutoST. To our best knowledge, the search space is

an important human prior to the success of NAS in different applica-

tions while current NAS models concentrated on optimizing search

strategy in the fixed search space. Thus, we design a novel search

space tailored for ST-domain which consists of two categories of

components: (i) optional convolution operations at each layer to

automatically extract multi-range spatio-temporal dependencies;

(ii) learnable skip connections among layers to dynamically fuse

low- and high-level ST-features. We conduct extensive experiments

on four real-word spatio-temporal prediction tasks, including taxi

flow and crowd flow, showing that the learned network architec-

tures can significantly improve the performance of representative

ST neural network models. Furthermore, our proposed efficient

NAS approach searches 8-10x faster than state-of-the-art NAS ap-

proaches, demonstrating the efficiency and effectiveness of AutoST.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; • Com-
puter methodologies→ Automatic machine learning.

∗
Junbo Zhang and Yu Zheng are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00

https://doi.org/10.1145/3394486.3403122

KEYWORDS
Spatio-temporal Prediction; Neural Architecture Search; AutoML

ACM Reference Format:
Ting Li, Junbo Zhang, Kainan Bao, Yuxuan Liang, Yexin Li and Yu Zheng.

2020. AutoST: Efficient Neural Architecture Search for Spatio-Temporal

Prediction. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’20), August 23–27, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3394486.3403122

1 INTRODUCTION
Advances in location-acquisition and wireless communication tech-

nologies have resulted in massive amounts of spatio-temporal (ST)

data, enabling many ST prediction tasks (e.g. crowd flow and traffic

flow) in cities, which is critically important for smart city applica-

tions [34]. With the development of deep learning techniques, many

deep spatio-temporal neural networks [6, 12, 30–32] have been pro-

posed to improve the performance for ST prediction. Nevertheless,

how to find the optimal neural architecture at at various scenarios

in cities is still an unsettled problem, because ST task is usually

affected by multiple complex factors: (i) the spatio-temporal cor-

relation is complex including spatial dependency between regions

and temporal correlation among timestamps; (ii) spatio-temporal

correlation is diverse from location to location, for example, there

is a great difference of rush hour between core city and small city;

(iii) spatio-temporal correlation is heterogeneous to different tasks,

for example, the local spatial correlation is important to crowd flow

prediction while the global spatial correlation is significant to taxi

flow prediction.

Recently, many studies have focused on designing networks

to model the complex ST dependencies. For spatial correlations,

authors in [20] argue that the long-distance spatial dependency

is increasing important but the stack of multi-layer convolutions

[32] can only capture the neighbor correlations. So they propose a

ConvPlus component to capture the long-range spatial dependency

among regions and a multi-scale fusion network to fuse multi-level

features. In addition, [8] belief that information in different ranges

reveals distinct traffic properties, for example, the neighborhood

range indicates local dependency while a long range tends to un-

cover the overall pattern. Therefore, they proposed a multi-range

attention network to model the diverse spatial distance dependency

in graph. For temporal correlations, [13] has adopted a series of

3D convolutions network to extract the spatio-temporal features

https://doi.org/10.1145/3394486.3403122
https://doi.org/10.1145/3394486.3403122

(a) TaxiGY (b) CrowdBJ

(c) # convolutions (d) # skip connections

Figure 1: Illustration of the relationship between flow distri-
butions (a and b) and neural architectures (c and d).

simultaneously. However, these methods mainly focus on modeling

the long-range dependency for specific scenarios in Metropolis.

Nevertheless, we consider that the optimal neural architectures is

distinct among different cities and conclude two important aspects

neglected in existing approaches.

First, existing approaches mainly focus on modeling the long-range
correlation. However, different cities may have different spatial ranges
preference. Intuitively, compared with areas with undeveloped trans-

portation system, the core cities should take longer distance range

as neighborhood information. However, the size of convolution ker-

nel which models the range of neighborhood dependency is usually

fixed and empirically set. We select the optimal architecture found

in neural architecture search (NAS) and analyze the search process,

which is shown in Figure 1. Figure 1(a) represents the taxi flow in

Guiyang and 1(b) represents the crowd flow in Beijing where has

more convenient transportation than Guiyang. Figure 1(c) shows

the scores of convolutions at the search stage. Specifically, we add

the weighted kernel size in all layers as the total scores for each

architecture at every iteration. We can observe that the evolution

tendencies of two cities have some differences and Beijing achieves

slightly higher score than Guiyang.

Second, current approaches usually use the residual network to
aggregate the features in adjacent layers, failing to fuse the low- and
high-level features. As we all know, the convolution operator at

deep layer tends to capture the high-level feature, and at shallow

layer attempts to extract the low-level feature. Furthermore, low-

and high-level features don’t contribute equally in all cases. Indeed,

compared with core cities, the low-level features which indicate the

local information contribute more than the overall information for

cities with undeveloped transportation system. Figure 1(d) show

the tendency of the number of skip connections at the search stage.

The more the number of skip connections indicates the more im-

portant the low-level features. We can observe that the architecture

in Beijing contains obviously less skip connections than Guiyang,

Historical
Flows

Initial ST
Feature

Extractor

External
Fusion &
Predictor

External
Information

Predicted flow

Historical
Flows

Initial ST
Feature

Extractor

ST-NASNet
(automatically)

External
Fusion &
Predictor

External
Information

Predicted flow

Feature Learning
Network

(manually-designed)

(a) Conventional model

Historical
Flows

Initial ST
Feature

Extractor

External
Fusion &
Predictor

External
Information

Predicted flow

Historical
Flows

Initial ST
Feature

Extractor

ST-NASNet
(automatically)

External
Fusion &
Predictor

External
Information

Predicted flow

Feature Learning
Network

(manually-designed)

(b) AutoST model

Figure 2: Conventional model vs. our AutoST model

verifying our assumption that different cities have distinct archi-

tecture preferences and core cities usually pay more attention to

the global spatial dependency.

To tackle the aforementioned problems, we propose a general

network called AutoST, which is shown in Fig 2. We can observe

that the traditional processes of ST prediction consists of three com-

ponents: (i) initial ST feature extractor: constructing ST features

from raw ST data [32]; (ii) feature learning network (such as the

residual network in [32] or the multi-scale fusion network in [20]):

learning representative multi-level ST features; (iii) external fusion

and predictor: fusing the external factors with flow information and

then predicting urban flows in the future. The key difference be-

tween our AutoST and the conventional method is the ST-NASNet

module which can automatically build the neural architecture at

different scenarios. We mainly design search space in ST-NASNet

to improve the network representation ability while fixed other

two components.

To the best of our knowledge, this is the first approach that

generalize NAS to the ST prediction problem. Our contributions

can be summarized into the following three aspects:

• We propose a novel model named AutoST for spatio-temporal

prediction which introduces the neural architecture search tech-

nique to dynamically capture the various-range spatial corre-

lations and to fuse multi-level features. In addition, AutoST is

oriented to ST data rather than specific application scenarios,

which can be easily applied to a series of deep models.

• We design an efficient and effective search space including two

basic modules: i) a mix convolution block at each layer to cap-

ture various-range spatial correlations; ii) a mix skip connection

block among layers to dynamically fuse the multi-level features.

Specifically, the mix convolution block consists of multiple convo-

lutions kernels, the larger size of which indicates the longer range

correlations. Besides, the mix skip connection block includes a

connection cell and a do-not-connection cell to dynamically learn

to fuse the low- and high level features.

• We perform extensive experiments on four real-world spatio-

temporal datasets varying from taxi flow to crowd flow, and

the experimental results demonstrate that AutoST can signifi-

cantly improve the spatial-temporal prediction. Furthermore, our

proposed spatio-temporal NAS method is more efficient than

existing NAS methods.

2 PRELIMINARIES
In this section, we briefly introduce the definitions and the spatial-

temporal prediction problem statement. For brevity, the frequently

used notations in this paper are presented in Table 1.

Table 1: Notations.

Notations Description
nc ∈ R the number of candidate convolutions

ns ∈ R the number of skip connections

θcl ∈ R the convolution parameters at layer l

acl ∈ R the architecture weight of cell c at layer l

asl ∈ R the architecture weight of cell s at layer l

Sc = {c0, ..., cnc } the set of all candidate convolutions

Ss = {s0, ...sns } the set of all categories of connections

Definition 1. Spatial-Temporal prediction [31]:We partition
a city into an I ∗ J grids based on longitude and latitude where a grid
denotes a region. There are many types of measures in a region for
different ST applications, such as the crowd flows, bike recent and
return, taxi pick-ups and drop-offs. Then, the urban information at
time t can be denoted as Xt ∈ R

C∗I∗J where C is the number of
measured values.

Definition 2. External Features:We denote Xe as the external
features including the meteorological and holiday information.

Problem Statement: Given historical observed citywide urban

flows {X0,X1, ...,Xt−1}, and external featuresXe , predict the traffic

flow for all locations in the next timestamps Xt .

3 METHODOLOGY
As shown in Figure 2, the key module in our proposed AutoST is

ST-NASNet (Spatio-TemporalNeural Architecture Search Net) that

is used to automatically learn spatio-temporal network architec-

ture. In this section, we follow the same 1st-order gradient-based

optimization strategy in DARTS [23] which is performed in contin-

uous search space. First, we describe the search space of DARTS

[23] which is widely used in image domain, then introduce a novel

search space tailored for ST prediction, as shown in Figure 3. Sec-

ond, we illustrate the exploitation of the proposed NAS network in

current ST models. Finally, we elaborate the optimization process.

3.1 Spatio-Temporal Search Space
The search space of neural network can be depicted by a general

DAG. Figure 3(a) shows the architecture of residual network in a

DAG view, every node of which represents the output of each layer

and arrow indicates the operation. In 3(a), the black arrow which

connects the adjacent two layers is the standard convolution with

kernel 3 × 3 and the brown arrow indicates the skip connection.

Distinct to neural network with fixed architecture, NAS network is

composed of three modules from simple to complex: (i) a candidate

cell module which defines the search unit; (ii) a operation block

module which perform weighted sum over all possible operations

to make the search space continuous; (iii) a NAS network module

which is consisted of a series of mix operations. We will illustrate

these three modules in detail.

3.1.1 Candidate Cells. For citywide spatio-temporal prediction

task, we usually divide a city into a grid map where each grid de-

notes a region and these grids make up an image. We select the

candidate cells based on the following three considerations. First,

since nearby regions may affect each other for ST prediction, con-

volution operation is important to model the local geographical

correlation. In addition, convolutions with different kernel size

model the spatial dependency in different ranges, so we should

take various convolution kernels into consideration. Second, global

correlation is also important for better prediction so that current

approaches [29, 32] usually stack multiple convolution layers to

capture large-scale citywide dependencies. Indeed, local correlation

captured by low-level convolution and global correlation encoded

with high-level convolution are both important for city-wide flow

forecasting. Therefore, skip connection which fuse multi-level cor-

relations is necessary. Finally, distinct to the common cnn networks

in image domain, ST prediction task does not need the pooling

operation because pooling can cause the information loss probably.

Therefore, we remove the 3 × 3 max pooling (Max_pool_3) and

3 × 3 average pooling (Avg_pool_3) operations in DARTS. In ad-

dition, we take the standard convolution into consideration. In

conclusion, we select the remaining six operations as basic search

cells and group them into two classes, they are: (i) convolution

operations consisting of 3 × 3 standard convolution (Std_conv_3),

5×5 standard convolution (Std_conv_5), 3×3 separable convolution

(Sep_conv_3), 5 × 5 separable convolution (Sep_conv_5); (ii) skip

connection operation including don’t connection (none) operation

and connection (identity) operation. To keep the shape of output

the same as input, we utilize the convolution of stride = 1 with

SAME padding and the filter dimensions of output is the same as

input. Besides, it should be noted that a convolution cell in this

paper refers to a Relu-Conv-BatchNorm unit.

3.1.2 Operation Blocks. As we all known, gradient-based search

strategy usually calculate the weighted sums over the outputs of

all basic operations to avoid the discrete choice of basic operation

unit. The illustration of operation block is shown in 3(b) and 3(c).

We can observe that DARTS in 3(b) simply add the outputs of eight

basic cells as the the final output of one operation block, which can

be formulated as Eq.(1):

p̄i (x) =
∑
p∈Sp

exp(a
p
i)∑

p′ ∈Sp exp(a
p′

i)
f (x;θ

p
i) (1)

where p̄i is the mix operation at layer i and Sp is the set of eight

candidate search cells. The f is the operation function and θ is

the parameters of f . However, we argue that the calculation of all

basic convolution operation at each layer may cause large memory

consumption. Specifically, suppose the number of layers of inner

networks is L, then there are
L∗(L−1)

2
+ L possible operations and

each operation is selected from eight basic search cells. That’s, there
are 8

L∗(L−1)/2+L possible network architectures in total.
In order to solve the memory inefficient problem, we propose to

group the basic cells into two categories and define two types of

mix operations shown in 3(c), they are: (i) mix convolution block

c̄i represented as blue arrow which calculates the weighted sum of

all convolution outputs; (ii) mix connection block s̄i represented as

Mix convolution

Mix connection

Network

a0

a3

a2

a1

Std_conv_3

Std_conv_5

Sep_conv_3

Sep_conv_5

out

Sep_conv_3

Sep_conv_5
out

a4

a5

-1

4

2

3

1

0

-1

4

2

3

1

0

Subnet
Network

Subnet 0

Subnet 1

output

Mix operation

Subnet 0

Subnet 1

inputMax_pool_3

Avg_pool_3

out

Sep_conv_3

Sep_conv_5

Dil_conv_3

Dil_conv_5

Sep_conv_3

Sep_conv_5

a0

a6

a7

a5

a4

a3

a2

a1

-1

4

2

3

1

0

(a) ResNet

Mix convolution

Mix connection

Network

a0

a3

a2

a1

Std_conv_3

Std_conv_5

Sep_conv_3

Sep_conv_5

out

None

Identity
out

a4

a5

-1

4

2

3

1

0

-1

4

2

3

1

0

Subnet
Network

Subnet 0

Subnet 1

output

Mix operation

Subnet 0

Subnet 1

inputMax_pool_3

Avg_pool_3

out

Sep_conv_3

Sep_conv_5

Dil_conv_3

Dil_conv_5

None

Identity

a0

a6

a7

a5

a4

a3

a2

a1

-1

4

2

3

1

0

(b) Search space of Darts

Mix convolution

Mix connection

Network

a0

a3

a2

a1

Std_conv_3

Std_conv_5

Sep_conv_3

Sep_conv_5

out

None

Identity

out

a4

a5

-1

4

2

3

1

0

(c) Search space of ST-NASNet

Figure 3: Architectures comparision (dashed arrow indicates learnable operation, solid arrow indicates fixed operation): (a)
Residual network: fixed architecture (b) the search space of Darts: widely used search space in image domain (c) the search
space of ST-NASNet: proposed search space in ST domain (best view in color).

green arrow which multiples the outputs of each layers with con-

nection probability. We define the trainable architecture weights

of convolution cells {a0,a1,a2,a3} and connection cells {a4,a5} as

architecture parameters A which controls the possibility of choos-

ing candidate cells. Besides, every convolution cell has parameters

including kernels, bias, we define them as model parametersM.

For optimization algorithms, authors in [11] observe that the num-

ber of skip connections increases when iterating more epochs, and

analysis the reason that it is caused by the inherent unfair competi-

tion. Therefore, they propose to relax the choice of operations to

be dependent and make each operation has an equal opportunity

to develop its strength. Specifically, they apply a sigmoid activation
instead of softmax to generate the architecture weights. In addi-

tion, we initialize the values inA with zeros instead of the random

numbers. Suppose Sc and Ss are the search units for convolution

operation and skip connection respectively, then the calculation of

mix convolution block and mix connection block is defined as:

c̄i (x) =
∑
c ∈Sc

σ (aci)f (x;θci) (2)

s̄i , j (x) =
∑
s ∈Ss

σ (asi , j)si , j (3)

Where f is the convolution operation and θ is the parameters of f .
The σ is the sigmoid activation funciton. The σ (aci) represents the
weights of candidate cell c at layer i . The s is the skip connection

function, si , j = 0 when s is none and si , j = 1 is x when s is

identity. For our model, there are Lmix convolution block and L∗(L−1)
2

mix connection block, then the number of possible architectures is

4
L + 2

L∗(L−1)

2 in total, which greatly reduces the search space.

3.1.3 NAS Network. As mentioned above, taking all possible op-

erations into consideration at each layer may cause the memory

inefficient. To solve this problem, DARTS divided the network into

two parts, the inner network which learns the architecture by NAS

and the outer network which has the fixed architecture shown in

3(b).

However, the fixed architecture of outer network may reduce

the performance. In order to make the network more efficient,

we constrain the search space according to the characteristics of

ST prediction in the following two aspects. First, there are only

one convolution in adjacent layers to capture large-range spatial

dependency. Second, there are no external feature transform when

fusing multi-level features so that we simply add the outputs of

previous layers to current layer. The architecture of AutoST is

shown in Fig.3(c), the output of l-th layer can be formulated as:

ol = c̄l (ol−1
) +

l−1∑
i=1

s̄i (oi) (4)

where oi is the output of i-th layer. The c̄l is to generate high-level

features at layer l and s̄i is to fuse features in layer i and layer l .
In conclusion, the proposed network admits the following three

advantages: (i) it is more effective than fixed architecture due that

existing networks are a subset of AutoST; (ii) it releases experts

from refining networks; (iii) it is more efficient than recent neural

architecture search method because the search space is carefully

designed and constrained for ST prediction task.

3.2 AutoST for Spatio-Temporal Prediction
We evaluate AutoST on three popular spatio-temporal prediction

models (STResNet [32], ST-3DNet [13] and DeepSTN [20]) to verify

the efficiency and generality of our algorithms. We follow the same

CPT (closeness, period and trend) paradigm as [20, 32] and take

DeepSTN as example to explain the AutoST for spatio-temporal pre-

diction, the model is shown in Fig 4. Different to model in [20], the

NAS model utilizes AutoST instead of multi-scale fusion network

to extract features.

ST-NASNet Conv2

External
features

Closeness

Period

Trend

Conv1

Conv1

Conv1

FCs

Relu

o

Figure 4: Illustration of AutoST for ST prediction

For ST model with L layers, the architecture parameters archi-
tecture parameter A and model parameterM can be defined as:

A = {acl ,a
s
l }, l = 1, ..., L, c = 1, ...,nc , s = 1, ...,ns (5)

M = {θcl , θc1
, θc2
, θf c }, l = 1, ..., L, c = 1, ...,nc (6)

where nc = 4 represents the the number of convolution cells and

ns = 2 is the number of connections. The θcl is the convolution

parameter at layer i . Besides, the θc1
, θc2

and θf c are parameters

for Conv1, Conv2 and FCs respectively. Finally, the output of ST

architecture search network in Fig.4 is:

o = Relu(f (oL ;θc2
) + f (xe ;θf c)) (7)

Where oL is the output of AutoST and xe representes the external

factor.

3.3 Algorithm and Optimization

Algorithm 1: Search algorithm of AutoST

Input: Historical flows: {x0, ..., xn−1 };
external features: {e0, ..., en−1 }

Output: learned AutoST model

1 construct training set Dtrain and validation set Dvalid
// search the architecture

2 initialize all trainable parameters

3 repeat
// update model parameters

4 randomly select a batch from Dtrain
5 forward on Dtrain to get Ltrain

6 θ
′
= θ − β∇θ Ltrain

// update architecture parameters
7 randomly select a batch from Dvalid
8 forward on Dvalid to get Lvalid

9 a
′
= a − γ ∇aLvalid ;

10 until stopping criteria is met
11 get the optimal architecture p∗ and s∗

// fix the architecture

12 D
′

train ←− Dtrain
⋃
Dvalid

13 initialize all trainable parameters

14 repeat
15 construct the network architecture

16 randomly select a batch from D
′

train
17 forward-backward on L

′

train by D
′

train
18 until stopping criteria is met
19 output the AutoST model

The training of NAS contains two stages: search stage and train

stage. Algorithm 1 outlines the searching process of AutoST. At the

search stage, we first split the data into training set and validation

set, then use the training loss Ltrain to optimize the θ which

denotes the trainable parameters in common neural networks and

use the validation lossLvalid to optimize the architecture parameter
a. The update processes of θ and a are as following:

θ
′

= θ − β∇θLtrain, a
′

= a − γ∇aLvalid (8)

Where β and γ are the learning rates. The optimal convolution and

connection operations at each layer is calculated as following:

c∗l = argmax

c ∈Sc
{acl } s∗l =

l−1⋃
i=0

argmax

s ∈Ss
{asl } (9)

Where c∗l and s∗l are the optimal convolution and connection oper-

ations at layer l respectively. At the training stage, we select the

optimal architecture to training the network.

4 EXPERIMENTAL RESULTS
In this section, we conduct experiments on four real-word city-

wide traffic flow datasets to evaluate the network performance.

Particularly, we answer the following questions:

Q1. Can AutoST be applied to a wide range of spatial-temporal

prediction tasks and steadily improve performance compared

with the state-of-the-art network?

Q2. Does the proposed search space be more efficient than which

in image domain?

Q3. How do the settings of AutoST, i.e., the number of layers

and the number of channels impact the prediction result?

4.1 Experimental Setting
4.1.1 Data Description. The brief introduction of used datasets as

shown in Table 2.

Table 2: Datasets.

Dataset Time spans Grid size # Ins

TaxiBJ

7/1/2013-10/30/2013

(32,32) 15072

3/1/2014-6/30/2014

3/1/2015-6/30/2015

11/1/2015-4/10/2016

CrowdBJ 9/1/2017-11/30/2017 (32, 32) 2016

TaxiJN 9/1/2017-1/31/2018 (32,16) 3323

TaxiGY 10/1/2018-5/26/2019 (20, 24) 5270

We divide each dataset into training, validation and test sets. At

the search stage, we use the validation set to learn neural archi-

tectures. At the training stage, we utilize the training set to train

model and validation set to perform the early-stopping strategy.

The details are as follows:

• TaxiBJ: This dataset was published by [32], indicating the taxi

flow traveling throughout Beijing. We aim to predict the future

inflows and outflows according to the historical observations.

We choose data from the last month as the test set, the next last

one month as validation set and all other data as training set.

• CrowdBJ: This dataset, which is extracted from the mobile base

station, indicates the crowd flow in Beijing. We first partition

Beijing into 32 × 32 grids and then calculate the inflows and

outflow in each grid. We select the last ten days as the test data,

the next last one month as the validation data and the others as

the training set.

• TaxiJN: This dataset denotes the taxi flow in Jinan. We first

partition Jinan into 32×16 grids. Then for each grid, we calculate

the hourly numbers of pick-ups and drop-offs. We select the last

10 days as the testing data, the next last 2 months as validation

data and others as training data.

• TaxiGY: Extracted from the taxicab GPS trajectory, TaxiGY rep-

resents the taxi flow in Guiyang. The studied area is split into

20× 24 grids and we count the number of pick-ups and drop-offs

in each grid. We choose the first five months as the training set,

the next two months as the validation set, and the last month as

the test set.

4.1.2 Evaluation Metrics. Wemeasure the accuracy of our methods

and baselines by Root Mean Square Error (RMSE), Mean Absolute

Error (MAE) and Mean Absolute Percentage Error (MAPE):

RMSE =

√√
1

n

n∑
i=1

(yi − ŷi)2, MAPE =
1

n

n∑
t=1

|
yi − ŷi
yi
| (10)

where n is the number of values, yi is the ground truth, and ŷi is
the prediction value. When calculating the MAPE loss, we remove

the samples with yi = 0.

4.1.3 Baseline Algorithms. We first compare AutoST with the state-

of-the-art methods for urban prediction as follows:

• ST-ResNet [32]: It follows the CPT paradigm and adopts the

late-fusion strategy to build the network. Specifically, it first

employs three residual network to model the spatial dependency

in closeness, period and trend respectively and then fuses the

outputs of these three parts as the final output.

• ST-3DNet [13]: It first exploits 3D convolution to capture the

correlation of traffic data in both spatial and temporal dimensions.

Different from the CPT paradigm, it only considers two properties

including closeness and trend. In addition, it utilizes a residual

network to capture the spatial dependency in closeness and one

3D convolution layer to model the that in trend.

• DeepSTNPlus [20]: It reduces the architecture redundancy by

exploiting the early-fusion at the beginning of whole model to

integrate the closeness, period and trend features, and then use a

multi-scale fusion network at the end of model to fuse multi-level

features, which shows state-of-the-art performance on citywide

flow prediction.

Second, we compare our proposed AutoST with the widely used

NAS algorithms including:

• ENAS [15]: It takes the reinforcement learning as search strategy

and accelerates search procedure by sharing parameters, showing

state-of-the-art performance on image domain.

• DARTS [23]: It is the first method to transforms discrete and

non-differentiable search space to continuous search space so that

more efficient search is allowed with gradient-based optimization

strategy.

In addition, DeepSTN-ne is a variant of DeepSTNPlus with no ex-

ternal subnet, and ST-ResNet+, ST-3DNet+, DeepSTN-ne+, DeepST-

NPlus+ represent the AutoST enhanced algorithms for ST-ResNet,

ST-3DNet, DeepSTN-ne and DeepSTNPlus respectively.

4.1.4 Hyperparameters. There are three types of hyperparameters

in STResNet: (i) data features including the channel of closeness,

period and trend; (ii) model hyperparameters consist of the number

of filters d and layers l ; (iii) trainer including learning rate, weight

decay, number of training epochs. For a fair comparison, we first

run a grid search on d ranging in [16, 32, 64, 128, 256] and l ranges
in [4, 8, 12, 16] on feature extraction network, then choose the best

parameter settings. For data features, we set the channel of closeness

to 6, trend to 2 for ST-3DNet and the channel of closeness to 3, period

to 1, trend to 1 for other methods. In addition, we set the number of

epochs as 300, both the model optimizer and architecture optimizer

to Adam. Besides, we run a grid search on the learning rate ranging

from [2e−3, 1e−3, 2e−4, 1e−4] with the weight decay fixed to 3e−4
,

learning rate of architecture learner to 2e−4
.

4.2 Overall Performances
4.2.1 Performance Comparison (Q1). We first give the performance

comparisons with three baseline models with fixed architecture on

three datasets, as shown in Table 3. For all deep models, we train

and test all methods ten times, and show the results as the format

"mean ± standard deviation". We have the following three obser-

vations. First, DeepSTNPlus performs best among all three fixed

networks. Compared with ST-ResNet, it exploits effective early-

fusion strategy which not only significantly reduces the structure

redundancy but also greatly improves the feature extraction abil-

ity. Besides, ST-3DNet performs better than ST-ResNet by 17.5%,

7.1%, 7.2% on three datasets. The reason is that ST-3DNet uses 3D

convolutions to model ST dependencies jointly which can capture

longer temporal correlations. Second, the proposed network per-

formances better than experts designed architectures. Specifically,

AutoST has enhanced DeepSTNPlus by 1.3%, 1.1%, 0.6% due to

that the proposed network can decide whether to fuse the outputs

of previous layers automatically which is more effective the fixed

multi-level fusion mechanism. Besides, AutoST improves the per-

formance of ST-3DNet and ST-ResNet more obviously than Deep-

STNPlus, because they both utilize the residual network to capture

the high-level spatial correlation ignoring the fusion of different

level features. Finally, AutoST has enhanced backbone network by

2.1%, 0.24%, 0.28% and external factors contribute the performance

improvement slightly.

In addition, we show the occupied memory and performances

on TaxiBJ dataset in Table 4. We can observe that AutoST enhances

existing architectures consistently on TaxiBJ dataset. From the

memory consumption perspective, it is obviously that DeepST-

NPlus occupied the least memory among all baselines. The reason

is that DeepSTNPlus constructs only one multi-level fusion net-

work for closeness, period and trend attributes while ST-ResNet

exploits late-fuison mechanism which requires three feature ex-

traction networks. Besides, the NAS enhanced models consume

about three times as much as fixed architectures due to that the

gradient-based search strategy needs to perform convolution oper-

ation on all candidate cells at every layer which largely increases

the memory consumption.

4.2.2 Complexity Comparison (Q2). Figure 5 shows the computa-

tion time and performance comparisons between ST-ResNet+ and

existing NAS models. We select ST-ResNet as backbone to study the

performance of three categories of NSA (including DARTS, ENAS

and AutoST) enhance models and only take the results on TaxiBJ

Table 3: Performance comparison of different methods on three datasets

Models CrowdBJ TaxiJN TaxiGY
RMSE MAPE RMSE MAPE RMAE MAPE

ST-ResNet 92.27 ± 4.42 74.24% ± 4.53% 5.876 ± 0.26 62.22% ± 0.80% 2.773 ± 0.10 56.95% ± 1.09%

ST-ResNet+ 87.35 ± 4.42 63.17% ± 4.53% 5.624 ± 0.06 72.30% ± 1.92% 2.521 ± 0.07 51.69% ± 0.59%

ST-3DNet 76.13 ± 2.14 55.51% ± 1.18% 5.458 ± 0.19 58.71% ± 2.71% 2.574 ± 0.08 52.71% ± 2.27%

ST-3DNet+ 62.28 ± 2.68 36.56% ± 3.49% 5.103 ± 0.04 57.11% ± 1.54% 2.488 ± 0.04 51.32% ± 0.78%

DeepSTN-ne 52.49 ± 0.37 32.17% ± 1.94% 4.664 ± 0.05 45.69% ± 0.97% 2.175 ± 0.02 50.81% ± 0.20%

DeepSTN-ne+ 51.38 ± 0.61 28.43% ± 1.98% 4.653 ± 0.20 46.58% ± 0.65% 2.169 ± 0.03 47.61% ± 0.06%

DeepSTNPlus 49.76 ± 0.57 28.60% ± 2.75% 4.653 ± 0.01 54.52% ± 0.30% 2.172 ± 0.06 50.01% ± 0.71%

DeepSTNPlus+ 49.09 ± 0.61 29.08% ± 5.80% 4.602 ± 0.00 44.35% ± 0.87% 2.157 ± 0.01 49.55% ± 0.87%

Table 4: Performances on TaxiBJ.

Models Param RMSE MAPE
ST-ResNet 0.92M 17.51 ± 0.05 33.92% ± 0.41%

ST-ResNet+ 3.38M 17.47 ± 0.05 33.52% ± 0.40%

ST-3DNet 0.54M 17.82 ± 0.36 31.04% ± 0.02%

ST-3DNet+ 1.36M 17.37 ± 0.20 27.77% ± 0.02%

DeepSTN-ne 0.42M 16.09 ± 0.02 27.05% ± 0.15%

DeepSTN-ne+ 1.24M 15.97 ± 0.06 27.72% ± 0.14%

DeepSTNPlus 0.44M 15.98 ± 0.05 26.52% ± 0.64%

DeepSTNPlus+ 1.26M 15.88 ± 0.19 25.97% ± 0.65%

DARTS ENAS Ours
15

16

17

18

19

20

R
M

S
E

18.07
17.51 17.47

(a) Performance on TaxiBJ

DARTS ENAS Ours
2.00

2.25

2.50

2.75

3.00

R
M

S
E

2.23

3.14

2.53

(b) Performance on TaxiGY

DARTS ENAS Ours
0

20

40

H
ou

r

52.5

7.3 5.1

(c) Time on TaxiBJ

DARTS ENAS Ours
0

2

4

6

8

10

H
ou

r

8.58

5.1

0.3

(d) Time on TaxiGY

Figure 5: Computation time and performance comparison

and TaxiGY dataset as two examples to illustrate the superiority

of AutoST because the time consumption of DARTS is too large to

be evaluated at multiple scenes. We can observe that our method

costs less time to find the optimal architecture without loss accuracy.

More specifically, from the efficiency perspective, DARTS consumes

almost 10.29 longer times than AutoST on TaxiBJ and 28.6 longer

times on TaxiGY. Besides, from the effectiveness view, AutoST

slightly worse than DARTS on TaxiBJ. We conclude the reasons

from the following two aspects. First, DARTS constrain the inner

network at every layer to have two inputs and every operations

should consider all candidate units, the multi-path ensemble mech-

anism of which improves the performance yet greatly increases

the computation complexity of architecture search. In addition, the

fixed architecture of outer network and the parameters-sharing

among all sub networks at search stage in DARTS leads to a large

performance gap between search and training stages.

32 48 64 128 256
2.00

2.05

2.10

2.15

2.20

2.25

2.30

RM
SE

2.197

2.164 2.172

2.145 2.136
2.159 2.155 2.157

2.141 2.14

DeepSTNPlus
DeepSTNPlus+

(a) # channels on TaxiGY

32 48 64 128 256
40

45

50

55

60

65

70

RM
SE

62.412

53.533

49.76 49.422

57.6857.453

52.603

49.09

52.873
54.876

DeepSTNPlus
DeepSTNPlus+

(b) # channels on CrowdBJ

4 8 12 16
2.00

2.05

2.10

2.15

2.20

2.25

2.30

RM
SE

2.183
2.172

2.184

2.1532.154 2.157
2.179

2.227

DeepSTNPlus
DeepSTNPlus+

(c) # layers on TaxiGY

4 8 12 16

46

48

50

52

54

RM
SE 50.006 49.76

50.893 50.631

48.072

49.09
49.513

49.042

DeepSTNPlus
DeepSTNPlus+

(d) # layers on CrowdBJ

Figure 6: Evaluation on the number of channels

4.2.3 Parameter Sensitivity Analysis (Q3). AutoST has many set-

tings, including the number of channels d , the number of layers l
and so on. To investigate the robustness of AutoST, we compare

the AutoST enhanced networks with DeepSTNPlus on d and l on
CrowdBJ and TaxiGY datasets.

• To evaluate the impact of the d , we fix l = 8 by default and vary

d in [32, 48, 64, 128, 256], the results are reported in Fig.6(a)-6(b).

We can observe that TaxiGY and CrowdBJ have different optimal

settings. Specifically, the prediction loss slightly decreases as d
increases on TaxiGY dataset and achieve the best results when

d = 256. Due to that the number of regions in Guiyang is less

than that in Beijing as well as the spatial dependency in Guiyang

is more simple. Therefore, d = 32 is effective enough for TaxiBJ

and adding more channels doesn’t improves the performance

too much. For the results in Beijing, we can observe that the

performances of both DeepSTNPlus and our proposed models

first improved significantly and achieve the best when d = 32,

then slightly reduced with more channels. The reason is that the

spatial correlations of Beijing is complex, so the model is under-

fitting when d = 32 and increasing more channels improves

the representation ability of both models significantly. In addi-

tion, we can observe the AutoST enhanced model outperforms

DeepSTNPlus consistently on TaxiGY dataset yet our model per-

forms slightly worse than DeepSTNPlus when d is larger than

128 due to that more channels increases the model parameters

exponentially which made the model hard to converge.

• To evaluate the impact of l , we fix the d = 64 by default and

change l in ranges [4, 8, 12, 16], the comparison results are shown

in Fig.6(c)-6(d). We can observe that the prediction accuracy of

DeepSTNPlus increases slightly with more layers and achieve

the best when l = 16 on TaxiGY dataset. However, the AutoST en-

hanced model performs best when l = 4 and performworse when

stacking more convolution layers. The reason is that stacking

too much layers to model simple ST correlations with complex

NAS algorithms leads the model hard to converge. In addition,

we can also observe that our proposed model outperforms Deep-

STNPlus with all settings on CrowdBJ dataset due to that the

proposed AutoST is more suitable when modeling complex ST

dependencies.

4.3 Case Study
We also evaluate the architecture learned by AutoST and the results

are shown in Fig.7. We can observe that the architecture searched

on CrowdBJ dataset has fewer skip connections. Specifically, there

is no skip connection operation in first four layers and on con-

nections to the input in last layers. The reason is that Beijing has

large-range spatial correlation which can be captured by stacking

multiple convolutions. Besides, the neighborhood information is

also important for accurate predictions so AutoST fuses the initial

neighborhood features with high-level features. In addition, we also

shows the finding architecture with l = 6 on TaxiGY daraset which

includes a large amount of skip connections among layers as shown

in 7(b). The reason is that the traffic conditions in Guiyang is not

as developed as that in Beijing and the short-range neighborhood

dependency contributes more than global features.

5 RELATEDWORK
5.1 Spatial-Temporal Prediction
Spatio-temporal data are ubiquitous in the physical world, such as

the traffic flow and the regional rainfall. Accurately predicting the

future dynamic of them from previous observations is very essential

to a wide range of real-world applications like traffic management

and weather forecasts [26].

Recently, deep learning has been successfully applied to var-

ious scenarios in the ST area. For example, the architectures of

(CNNs) were widely used in grid-based data modeling. Typically,

[18, 19, 29, 31, 32] aim to design specific neural network structures

-1

05x5
5

6

8

13x3 23x3 35x5 43x3
3x3

3x3

73x3

(a) CrowdBJ

-1 0 5x5

1

 3x3

4

5

62 3x3

3

 3x3 3x3 3x3

(b) TaxiGY

Figure 7: Architectures learned by AutoST

for modeling or predicting crowd flow as well as taxi demands. How-

ever, most of them are predicting the citywide traffic flow based

on multi-view [29] or multi-task [33] which need to incorporate

large number of expert knowledge. In addition, some researchers

tries to formulate the ST prediction problem on graphs and build

the model with graph convolution network [6, 12]. However, the

data quality of cities has large difference that some cities release

multiple yeas of data while others only release a few days of data.

To tackle this problem, transfer learning and meta learning [25, 28]

are often utilized for more accurate prediction.

Moreover, Recurrent Neural Nets (RNNs) became popular due to

their success in sequence learning. However, existing RNN models

(such as LSTM [16] and GRU [9]) have only considered the sequence

information but discard the spatial correlation. To tackle this issue,

there were several studies that were also motivated by RNNs like

video prediction [27]. Very recent studies [17] have indicated that

the attention mechanism enables RNNs to capture dynamic spatio-

temporal correlation in geo-sensory data.

Different from previous studies which design complex network

based on domain knowledge, we aim to automatically learn neural

architecture for different data to improve the generalization ability

of model and release human out of designing networks.

5.2 Network Architecture Search
Current employed architectures in ST prediction tasks have been

designed manually by human experts, which is time-consuming.

Because of this, there is increasing interest in automated neural

architecture search method [36]. In previous years, NAS usually

adopts the bayesian optimization [2] which first achieves the com-

petitive performance against human experts on CIFAR-10 and Penn

Treebank. However, bayesian optimization costs vast computional

resources (800 GPU for three or four weeks) [2]. To solve these prob-

lem, several approaches for accelerating NAS has been proposed

[3–5, 14, 15, 22, 24]. In addition, [15] formulates NAS as a rein-

forcement learning problem and accelerate the search by sharing

parameters which speeds up NAS by more than 1000x. The authors

in [23] observe that either evolution or reinforcement learning

treats the architecture search as a black-optimization problem over

a discrete search space, so they propose to relax the discrete search

space to continuous space which allows more efficient search of

the architecture using gradient descent.

However, researchers in [11] argue that DARTS suffers from the

unfair competition so that the number of skip connections increases

when iterating more epochs. To solve the unfair competition, they

propose to utilize sigmoid function instead of softmax to make the

candidate cells dependent to each other. Moreover, the gradient-

based search strategy has ineffective problem that there is a large

performance gap between search and train stages. To solve this

problem, many studies like [7, 14] propose to binary the operations

so as to compress the model. The low source and time consumption

inspire researchers to apply NAS [1, 10, 21, 35] into more domains.

Different from most of existing methods which optimizes the

search strategy under fixed search space in image domain, we make

the first try to design an effective search space tailored for ST

prediction task.

6 CONCLUSIONS
In this paper, we study the problem of spaito-temporal prediction

using neural architecture search method. We propose a novel NAS

network named AutoST with an efficient search space tailored

for spatio-temporal prediction task which can be generalized to

multiple different scenes. Specifically, AutoST includes a optional

convolution block composed of multi-scale kernels to capture differ-

ent ranges of features at variable scales and a trainable connection

block to dynamically fuse multi-scale spatial features. The proposed

AutoST can automatically search the architecture which can handle

the multi-range and multi-scale problems in prediction. In addition,

AutoST is efficient and insensitive to different scenes. We evaluate

our AutoST on four real-word datasets varying from crowd to taxi

flow prediction, the performances of which are better than fixed

architectures and more efficient than other search methods. The

results demonstrate the efficiency and effectiveness of AutoST.

ACKNOWLEDGEMENT
This work was supported by the National Key R&D Program of

China (2019YFB2101805) and Beijing Academy of Artificial Intelli-

gence (BAAI).

REFERENCES
[1] J. An, H. Xiong, J. Huan, and J. Luo. Ultrafast photorealistic style transfer via

neural architecture search. In Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence (AAAI-20), 2020.

[2] Z. Barret and V. L. Quoc. Neural architecture search with reinforcement learning.

In In International Conference on Learning Representations (ICLR-17), 2017.
[3] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le. Understanding and

simplifying one-shot architecture search. In Thirty-fifth International Conference
on Machine Learning (ICML-2018), 2018.

[4] A. Brock, T. Lim, . J. Ritchie, and N. Weston. Smash: One-shot model architecture

search through hypernetworks. In arXiv:1711.00536, 2017.
[5] H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct neural architecture search on

target task and hardware. In Proceedings of the Seventh International Conference
on Learning Representations (ICLR-2019), 2019.

[6] C. Chen, K. Li, S. G. Teo, X. Zou, k. Wang, j. Wang, and Z. Zeng. Gated residual

recurrent graph neural networks for traffic prediction. In Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), 2019.

[7] H. Chen, L. Zhuo, B. Zhang, X. Zheng, J. Liu, D. Doermann, and R. Ji. Binarized

neural architecture search. In Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence (AAAI-20), 2020.

[8] W. Chen, L. Chen, Y. Xie, W. Cao, Y. Gao, and X. Feng. Multi-range attentive

bicomponent graph convolutional network for traffic forecasting. In Proceedings
of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), 2020.

[9] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio. Learning phrase representations using rnn encoder-decoder for

statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.
[10] X. Chu, B. Zhang, H. Ma, R. Xu, J. Li, and Q. Li. Fast, accurate and lightweight

super-resolution with neural architecture search. In arXiv:1901.07261, 2019.
[11] X. Chu, T. Zhou, B. Zhang, and J. Li. Fair darts: Eliminating unfair advantages in

differentiable architecture search. In arXiv preprint arXiv:1911.12126, 2019.
[12] x. Geng, Y. Li, L. Wang, L. Zhang, q. Yang, j. Ye, and Y. Liu. Spatiotemporal multi-

graph convolution network for ride-hailing demand forecasting. In Proceedings
of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), 2019.

[13] S. Guo, Y. Lin, S. Li, Z. Chen, and H.Wan. Deep spatial–temporal 3d convolutional

neural networks for traffic data forecasting. IEEE Transaction on intelligent
transportation system (TITS-2019), 2019.

[14] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun. Single path one-shot

neural architecture searchwith uniform sampling. arXiv preprint arXiv:1904.00420,
2019.

[15] P. Hieu, Y. Melody, Z. Barret, V. L. Quoc, and D. Jeff. Efficient neural architec-

ture search via parameter sharing. In In International Conference on Learning
Representations (ICLR-18), 2018.

[16] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[17] Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng. Geoman: Multi-level attention

networks for geo-sensory time series prediction. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pages
3428–3434. IJCAI, 7 2018.

[18] Y. Liang, K. Ouyang, L. Jing, S. Ruan, Y. Liu, J. Zhang, D. S. Rosenblum, and

Y. Zheng. Urbanfm: Inferring fine-grained urban flows. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD-19), 2019.

[19] Y. Liang, K. Ouyang, J. Zhang, Y. Zheng, and D. S. Rosenblum. Revisiting convo-

lutional neural networks for urban flow analytics. arXiv:2003.00895, 2020.
[20] Z. Lin, J. Feng, Z. Lu, Y. Li, and D. Jin. Deepstn+: Context-aware spatial temporal

neural network for crowd flow prediction in metropolis. In Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), 2019.

[21] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. Yuille, and F. Li. Hierarchical

neural architecture search for semantic image segmentation. In arXiv:1901.02985,
2019.

[22] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical

representations for efficient architecture search. In Proceedings of the Sixth
International Conference on Learning Representations (ICLR-2018), 2018.

[23] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

[24] H. Lu, J. Langford, R. Caruana, S. Mukherjee, E. Horvitz, and D. Dey. Efficient

forward architecture search. In arXiv:1905.13360, 2019.
[25] z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, and J. Zhang. Urban traffic prediction

from spatio-temporal data using deep meta learning. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD-19), 2019.

[26] X. Shi and D.-Y. Yeung. Machine learning for spatiotemporal sequence forecasting:

A survey. arXiv preprint arXiv:1808.06865, 2018.
[27] Y. Wang, M. Long, J. Wang, Z. Gao, and S. Y. Philip. Predrnn: Recurrent neural

networks for predictive learning using spatiotemporal lstms. In Advances in
Neural Information Processing Systems, pages 879–888, 2017.

[28] H. Yao, Y. Liu, Y. Wei, X. Tang, and Z. Li. Learning from multiple cities: A meta-

learning approach for spatial-temporal prediction. In Proceedings of the Web
Conference (WWW-2019), 2019.

[29] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, and L. Zhenhui. Deep

multi-view spatial-temporal network for taxi demand prediction. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 2018.

[30] B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional networks: A deep

learning framework for traffic forecasting. In Proceedings of the Twenty-sixth
International Joint Conference on Artificial Intelligence, IJCAI-17, 2017.

[31] J. Zhang, Y. Zheng, Q. Dekang, R. Li, and X. Yi. Dnn-based prediction model for

spatial-temporal data. In SIGSPATIAL, 2016.
[32] J. Zhang, Y. Zheng, and D. Qi. Deep spatio-temporal residual networks for city-

wide crowd flows prediction. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence (AAAI-17), pages 1655–1661, 2017.

[33] J. Zhang, Y. Zheng, J. Sun, and D. Qi. Flow prediction in spatio-temporal networks

based on multitask deep learning. IEEE Transactions on Knowledge and Data
Engineering (TKDE-2019), 09 2019.

[34] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing: Concepts,

methodologies, and applications. ACM Transaction on Intelligent Systems and
Technology, October 2014.

[35] Z. Zhu, C. Liu, D. Yang, A. Yuille, and D. Xu. V-nas: Neural architecture search

for volumetric medical image segmentation. In 3DV, 2019.
[36] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures

for scalable image recognition. In arXiv:1707.07012, 2017.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Spatio-Temporal Search Space
	3.2 AutoST for Spatio-Temporal Prediction
	3.3 Algorithm and Optimization

	4 Experimental Results
	4.1 Experimental Setting
	4.2 Overall Performances
	4.3 Case Study

	5 Related Work
	5.1 Spatial-Temporal Prediction
	5.2 Network Architecture Search

	6 Conclusions
	References

